Справочник по математикеСредние линии треугольника трапеции четырехугольника тетраэдра теорема ВариньонаГеометрия (Планиметрия)Средние линии треугольника трапеции четырехугольника тетраэдра теорема Вариньона Средние линии

 

Средние линии

Содержание

средние линии треугольника Средние линии треугольника
средняя линия трапеции Средняя линия трапеции
средние линии четырехугольников теорема Вариньона Средние линии четырехугольников. Теорема Вариньона
средние линии тетраэдра Средние линии тетраэдра
 

Средние линии треугольника трапеции четырехугольника тетраэдра теорема Вариньона

Средние линии треугольника

ОПРЕДЕЛЕНИЕ. Средней линией треугольника называют отрезок, соединяющий середины двух сторон треугольника (рис. 1).

Средние линии треугольника

Рис.1

На рисунке 1 средней линией является отрезок DE.

УТВЕРЖДЕНИЕ 1. Средняя линия треугольника параллельна не пересекающейся с ней стороне треугольника и равна половине этой стороны.

ДОКАЗАТЕЛЬСТВО. Рассмотрим произвольный треугольник   ABC   и обозначим буквой   D   середину стороны   AB   (рис. 2). Проведем через точку   D   до пересечения с прямой   BC   прямую, параллельную прямой   AC .   Обозначим буквой   E   точку пересечения прямых   DE   и   BC .

Средние линии треугольника

Рис.2

Поскольку   AD = DB ,   а прямые   AC   и   DE   параллельны, то выполнены все условия теоремы Фалеса, и можно заключить, что выполнено равенство:   CE = EB .   Отсюда вытекает, что точка   E   является серединой стороны   CB ,   а отрезок   DE   является средней линией треугольника.

Первую часть утверждения 1 мы доказали.

Для того, чтобы доказать вторую часть утверждения 1, заметим, что в любом треугольнике можно провести три средних линии – отрезки   DE , EF   и   FD   (рис.3).

Средние линии треугольника

Рис.3

Поскольку

DE | | FC ,       DF | | EC ,

то четырёхугольник DECF – параллелограмм, следовательно,   DE = FC .

Поскольку

DE | | AF ,       AD | | FE ,

то четырёхугольник   DEFA   – параллелограмм, следовательно,   DE = AF .

Но поскольку   AF = FC ,   то отсюда вытекает равенство

Средние линии треугольника

что и требуется доказать.

Доказательство утверждения 1 закончено.

СЛЕДСТВИЕ.

Средние линии треугольника

Рис.4

Средняя линия трапеции

Напомним, что трапецией называют четырёхугольник, у которого две стороны параллельны, а две другие – не параллельны.

Параллельные стороны трапеции называют основаниями, а непараллельные стороны – боковыми сторонами трапеции.

Отрезки, соединяющие противоположные вершины трапеции, называют диагоналями трапеции.

ОПРЕДЕЛЕНИЕ. Средней линией трапеции называют отрезок, соединяющий середины боковых сторон трапеции (рис. 5).

Средняя линия трапеции

Рис.5

На рисунке 5 средней линией трапеции является отрезок   EF .

УТВЕЖДЕНИЕ 2. Средняя линия трапеции параллельна основаниям трапеции и равна половине суммы этих оснований.

Средняя линия трапеции

Рис.6

ДОКАЗАТЕЛЬСТВО. Проведем через вершину   B   и середину боковой стороны   F   трапеции прямую линию (рис. 6). Обозначим точку пересечения прямых   BF   и   AD   буквой   G .  

Рассмотрим треугольники   BCF   и   FDG .   У этих треугольников

  • стороны   CF   и   FD   равны, поскольку точка   F   – середина стороны   CD; 
  • углы   BCF   и   FDG   равны, поскольку они являются внутренними накрест лежащими углами, образованными при пересечении параллельных прямых   BC   и   AD   с секущей   CD;
  • углы   BFC   и   DFG   равны, поскольку они являются вертикальными.

Тем самым выполнены все условия признака равенства треугольников «По стороне и прилежащим к ней углам», и можно заключить, что треугольники   BCF   и   FDG   равны.

Из равенства треугольников   BCF   и   FDG   следует равенство отрезков   BF   и   FG ,   откуда вытекает, что отрезок   EF   является средней линией треугольника   ABG .   Поэтому

Средняя линия трапеции

что и требовалось доказать.

ЗАДАЧА 1. Доказать, что средняя линия трапеции делит пополам любой отрезок с концами на основаниях трапеции.

Средняя линия трапеции

Рис.7

РЕШЕНИЕ. Пусть   ABCD   – трапеция,   EF   –  её средняя линия,   LM   – указанный отрезок (рис.7). Поскольку   AE = EB ,   то, в силу теоремы Фалеса, выполнено равенство:   LN = NM ,   что и требовалось доказать.

ЗАДАЧА 2. Доказать, что отрезок, который диагонали трапеции высекают на средней линии трапеции, равен половине разности оснований трапеции.

Средняя линия трапеции

Рис.8

РЕШЕНИЕ. Пусть   ABCD   – трапеция,   EF   – её средняя линия,   KL   – указанный отрезок (рис.8). В соответствии с задачей 1 можем заключить, что точка   K   – середина отрезка   AC ,   а точка   L   – середина отрезка   BD .   Поэтому отрезок   EK   – средняя линия треугольника   BAC ,   а отрезок   EL   – средняя линия треугольника   ABD .   В силу утверждения 1 выполнены равенства:

Средняя линия трапеции

Следовательно,

Средняя линия трапеции

что и требовалось доказать.

УТВЕРЖДЕНИЕ 3. Прямая, проходящая через середины оснований трапеции, проходит через точку пересечения боковых сторон трапеции.

Средняя линия трапеции

Рис.9

ДОКАЗАТЕЛЬСТВО. Пусть   K   и   L   – середины оснований   BC   и   AD   трапеции   ABCD   соответственно (рис.9). Обозначим буквой   M   точку пересечения боковых сторон   AB   и   CD .   Проведем через точки   M   и   K   прямую и обозначим точку пересечения этой прямой с основанием   AD   символом   N .   Докажем, что точки   N   и   L   совпадают. Для этого заметим, что треугольник   BMK   подобен треугольнику   AMN .   Следовательно, выполнено равенство:

Средняя линия трапеции

Заметим также, что треугольник   KMC   подобен треугольнику   NMD .   Поэтому

Средняя линия трапеции

Из этих соотношений получаем:

Средняя линия трапецииСредняя линия трапеции

откуда вытекает, что точки   N   и   L   совпадают. Доказательство завершено.

Почти те же рассуждения позволяют доказать следующий факт, который мы предоставляем читателю в качестве упражнения.

УТВЕРЖДЕНИЕ 4. Прямая, проходящая через точку пересечения диагоналей и середину одного из оснований трапеции, проходит через середину другого основания трапеции.

СЛЕДСТВИЕ. Точка пересечения диагоналей, середины оснований и точка пересечения боковых сторон трапеции лежат на одной прямой.

Средние линии четырехугольника. Теорема Вариньона

ОПРЕДЕЛЕНИЕ. Средней линией четырехугольника называют отрезок, соединяющий середины непересекающихся сторон четырёхугольника.

Поскольку у каждого четырехугольника имеются две пары непересекающихся сторон, то у каждого четырехугольника имеются две средних линии (рис.10).

Средние линии четырехугольника теорема Вариньона

Рис.10

На рисунке 10 средние линии – это отрезки   EF   и   GH .

ЗАМЕЧАНИЕ 1. Приведенное определение средней линии относится не только к плоским четырехугольникам, но и к «пространственным четырехугольникам» (рис.11).

«Пространственным четырехугольником» мы называем замкнутую ломаную линию из 4 звеньев без самопересечений, не лежащую в одной плоскости.

Средние линии четырехугольник теорема Вариньона

Рис.11

На рисунке 11 изображен «пространственный четырёхугольник»   ABCD ,   средними линиями которого являются отрезки   EF   и   GH .

ЗАМЕЧАНИЕ 2. Несмотря на то, что трапеция является четырехугольником, принято средней линией трапеции называть только отрезок, соединяющий середины её боковых сторон.

ЗАМЕЧАНИЕ 3. В данном разделе справочника не рассматриваются невыпуклые четырёхугольники и четырёхугольники с самопересечениями.

ТЕОРЕМА ВАРИНЬОНА. Середины сторон произвольного плоского или «пространственного» четырёхугольника являются вершинами параллелограмма.

ДОКАЗАТЕЛЬСТВО. Рассмотрим плоский четырёхугольник   ABCD ,   изображенный на рисунке 12. Точки   E, G, F, H   – середины сторон, отрезок   AC   – диагональ четырёхугольника.

Средние линии четырехугольника теорема Вариньона

Рис.12

Поскольку отрезок   EG   – средняя линия треугольника   ABC ,   то отрезок   EG   параллелен диагонали   AC   и равен её половине.

Поскольку отрезок   FH   – средняя линия треугольника   CDA ,   то отрезок   FH   параллелен диагонали   AC   и равен её половине.

Таким образом, в четырёхугольнике   EGFH   противоположные стороны   EG   и   FH   равны и параллельны. В силу признака параллелограмма отсюда вытекает, что четырёхугольник   EGFH   – параллелограмм, что и требовалось доказать.

ЗАМЕЧАНИЕ 4 . В случае «пространственного четырёхугольника»   ABCD   доказательство остаётся тем же (рис. 13).

Средние линии четырехугольника теорема Вариньона

Рис.13

Поскольку диагонали параллелограмма в точке пересечения делятся пополам, то справедливо следующее утверждение, непосредственно вытекающее из теоремы Вариньона.

УТВЕРЖДЕНИЕ 5. Средние линии произвольного четырёхугольника пересекаются и в точке пересечения делятся пополам (рис. 14).

Средние линии четырехугольника теорема Вариньона

Рис.14

УТВЕРЖДЕНИЕ 6. Рассмотрим произвольный плоский или «пространственный» четырёхугольник   ABCD ,   у которого отрезок   EF   является одной из средних линий (рис. 15). Тогда будет выполнено векторное равенство:

Средние линии четырехугольника теорема Вариньона

Средние линии четырехугольника теорема Вариньона

Рис.15

ДОКАЗАТЕЛЬСТВО. Рассмотрим в пространстве или на плоскости произвольную декартову систему координат с началом в некоторой точке   O   (рис. 16).

Средние линии четырехугольника теорема Вариньона

Рис.16

В соответствии со свойствами векторов справедливы следующие равенства:

Средние линии четырехугольника

что и требовалось доказать.

СЛЕДСТВИЕ. Средняя линия четырёхугольника меньше или равна половине суммы не пересекающих её сторон четырёхугольника, причём равенство достигается лишь в том случае, когда указанные стороны четырёхугольника параллельны.

Другими словами, средняя линия четырёхугольника равна половине суммы не пересекающих её сторон четырёхугольника лишь в том случае, когда этот четырехугольник является трапецией, а не пересекающие среднюю линию стороны четырёхугольника – основания трапеции.

Средние линии тетраэдра

Тетраэдром называют произвольную треугольную пирамиду (рис.17).

Средние линии тетраэдра

Рис.17

У каждого тетраэдра имеется   4   вершины,   4   грани и   6   рёбер, причем все рёбра делятся на   3   пары непересекающихся рёбер. На рисунке 17 каждая пара непересекающихся рёбер выделена отдельным цветом. Каждые два непересекающихся ребра тетраэдра лежат на скрещивающихся прямых.

ОПРЕДЕЛЕНИЕ. Средней линией (бимедианой) тетраэдра называют отрезок, соединяющий середины двух непересекающихся рёбер тетраэдра.

Средние линии тетраэдра

Рис.18

У каждого тетраэдра имеется 3 средних линии. Изображённый на рисунке 18 отрезок   EF   является одной из средних линий тетраэдра.

УТВЕРЖДЕНИЕ 7. Все средние линии тетраэдра пересекаются в одной точке и делятся этой точкой пополам.

ДОКАЗАТЕЛЬСТВО. Выберем какую-нибудь среднюю линию тетраэдра, например,   EF   и докажем, что любая другая средняя линия тетраэдра проходит через середину отрезка   EF .   Для этого рассмотрим, например, среднюю линию   GH ,   соединяющую середины рёбер   AC   и   BD ,   и соединим отрезками точки   E, H, F, G   (рис.19).

Средние линии тетраэдра

Рис.19

Заметим, что отрезок   EH   является средней линией треугольника   ADB ,   поэтому

Средние линии тетраэдра

Отрезок GF является средней линией треугольника   ACB ,   поэтому

Средние линии тетраэдра

Отсюда вытекает, что отрезки   EH   и   GF   равны и параллельны, следовательно, четырёхугольник   EHFG   – параллелограмм. Поскольку средние линии тетраэдра   EF   и   GH   являются диагоналями этого параллелограмма, то в точке пересечения они делятся пополам, что и требовалось доказать.

ОПРЕДЕЛЕНИЕ. Точку пересечения средних линий тетраэдра называют центроидом тетраэдра.

УТВЕРЖДЕНИЕ 8. Рассмотрим в пространстве декартову систему координат с началом в точке   O   и произвольный тетраэдр   ABCD .   Если обозначить буквой   M   центроид этого тетраэдра (рис. 20), то будет выполнено векторное равенство:

Средние линии тетраэдра

Средние линии тетраэдра

Рис.20

ДОКАЗАТЕЛЬСТВО. По свойствам векторов

Средние линии треугольника трапеции четырехугольника тетраэдра теорема Вариньона

что и требовалось доказать.

© «Резольвента - учебные материалы», 2009-2024 

Rambler's Top100  Рейтинг@Mail.ru

Метрика Яндекса
 Яндекс.Метрика