e-mail: resolventa@list.ru
Mосква, Северо-восток
Подготовка школьников, студентов и аспирантов к экзаменам по математике
Помощь студентам
Помощь аспирантам
Вакансии в учебном центр Резольвента
Поиск по сайту:
До ЕГЭ по математике осталось
дней часов минут секунд


НАШИ УСЛУГИ
Подготовительные курсы к ОГЭ (ГИА) и ЕГЭ
Подготовка к итоговому сочинению
Репетиторы
для школьников
НАШИ МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ
Справочник
по математике
для школьников
Наши учебные пособия

ЕГЭ по физике?

(495) 509-28-10
Курсы подготовки к ЕГЭ 2016 по физикеУчебный центр «РЕЗОЛЬВЕНТА»

Проблемы с
математикой?

(495) 509-28-10
Подготовка к ЕГЭ и ОГЭ (ГИА) по математике Учебный центр "РЕЗОЛЬВЕНТА"

Сложно с геометрией?

(495) 509-28-10
Помощь школьникам 8 9 10 11 классов по геометрииУчебный центр «РЕЗОЛЬВЕНТА»

ЕГЭ по русскому языку?

(495) 509-28-10
Курсы подготовки к ЕГЭ 2016 по русскому языкуУчебный центр «РЕЗОЛЬВЕНТА»

Как решать задачи
по физике?

(495) 509-28-10
Репетиторы по физике Учебный центр "РЕЗОЛЬВЕНТА"



Решение уравнений четвертой степени метод Феррари ЕГЭ. Математика. 4000 задач с ответами. Базовый и профильный уровни. "Закрытый сегмент" - Ященко И.В.
Купить книгу с доставкой
в интернет-магазине
My-shop.ru
Решение уравнений четвертой степени метод Феррари ОГЭ 2016. Математика. Комплекс материалов для подготовки учащихся (совместно с ФИПИ) - Ященко И.В.
Купить книгу с доставкой
в интернет-магазине
My-shop.ru
Решение уравнений четвертой степени метод Феррари ЕГЭ по математике. Геометрия. Практическая подготовка. Учебное пособие - Черняк А.А.
Купить книгу с доставкой
в интернет-магазине
My-shop.ru
Решение уравнений четвертой степени метод Феррари ОГЭ. Математика. 9 класс. Три модуля: "Алгебра", "Геометрия", "Реальная математика". Тематичес- кие тестовые задания. Супертренинг - Лаппо Л.Д.
Купить книгу с доставкой
в интернет-магазине
My-shop.ru
НАШИ ПАРТНЕРЫ
Учебный центр Резольвента контактная информация
Подготовка к ЕГЭ и ОГЭ (ГИА)
Учебные пособия по математике для школьников и студентов
Справочник по математике для школьников
Справочник по математике Решение уравнений четвертой степени метод Феррари Алгебра Решение уравнений четвертой степени метод Феррари Уравнения четвертой степени

Решение уравнений 4-ой степени. Метод Феррари

Схема метода Феррари

      Целью данного раздела является изложение метода Феррари, с помощью которого можно решать уравнения четвёртой степени

a0x4 + a1x3 + a2x2 + a3x + a4 = 0, (1)

где a0, a1, a2, a3, a4  произвольные вещественные числа, причем Решение уравнений четвертой степени метод Феррари

      Метод Феррари состоит из двух этапов.

      На первом этапе уравнения вида (1) приводятся к уравнениям четвертой степени, у которых отсутствует член с третьей степенью неизвестного.

      На втором этапе полученные уравнения решаются при помощи разложения на множители, однако для того, чтобы найти требуемое разложение на множители, приходится решать кубические уравнения.

Приведение уравнений 4-ой степени

      Разделим уравнение (1) на старший коэффициент a0 . Тогда оно примет вид

x4 + ax3 + bx2 + cx + d = 0, (2)

где a, b, c, d –  произвольные вещественные числа.

      Сделаем в уравнении (2) замену

Решение уравнений четвертой степени метод Феррари (3)

где y –  новая переменная.

      Тогда, поскольку

Решение уравнений четвертой степени метод Феррари

то уравнение (2) принимает вид

Решение уравнений четвертой степени метод Феррари (4)

      Если ввести обозначения

Решение уравнений четвертой степени метод Феррари

то уравнение (4) примет вид

y4 + py2 + qy + r = 0, (5)

где p, q, r –  вещественные числа.

      Первый этап метода Феррари  завершён.

Разложение на множители. Кубическая резольвента

      Добавив и вычитая в левой части уравнения (5) выражение

2sy2 + s2,

где s –  некоторое число, которое мы определим чуть позже, из (5) получим

Решение уравнений четвертой степени метод Феррари

      Следовательно, уравнение (5) принимает вид

Решение уравнений четвертой степени метод Феррари (6)

      Если теперь выбрать число s так, чтобы оно являлось каким-нибудь решением уравнения

Решение уравнений четвертой степени метод Феррари (7)

то уравнение (6) примет вид

Решение уравнений четвертой степени метод Феррари (8)

      Избавляясь от знаменателя, уравнение (7) можно переписать в виде

Решение уравнений четвертой степени метод Феррари

или, раскрыв скобки, - в виде

Решение уравнений четвертой степени метод Феррари (9)

      Полученное кубическое уравнение (9), эквивалентное уравнению (7), называют кубической резольвентой уравнения 4-ой степени (5).

      Если какое-нибудь решение  кубической резольвенты (9) найдено, то уравнение (8) можно решить, разложив его левую часть на множители с помощью формулы сокращенного умножения «Разность квадратов».

      Действительно,

Решение уравнений четвертой степени метод Феррари

      Таким образом, для решения уравнения (8) остаётся решить квадратное уравнение

Решение уравнений четвертой степени метод Феррари (10)

а также квадратное уравнение

Решение уравнений четвертой степени метод Феррари (11)

      Вывод метода Феррари завершен.

Пример решения уравнения 4-ой степени

      Пример. Решить уравнение

x4 + 4x3 – 4x2 – 20x – 5 = 0. (12)

      Решение. В соответствии с (3) сделаем в уравнении (12) замену

x = y – 1. (13)

      Поскольку

x4 + 4x3 – 4x2 – 20x – 5 = (y – 1)4 + 4(y – 1)3 – 4(y – 1)2 – 20(y – 1)– 5 =
= y4 – 4y3 + 6y2 – 4y + 1 + 4y3 – 12y2 + 12y – 4 – 4y2 + 8y – 4 – 20y + 20 – 5 =
= y4 – 10y2 – 4y + 8,

то в результате замены (13) уравнение (12) принимает вид

y4 – 10y2 – 4y + 8 = 0. (14)

      В соответствии с (5) для коэффициентов уравнения (14) справедливы равенства

p = – 10,      q = – 4,       r = 8. (15)

      В силу (9)  и (15) кубической резольвентой для уравнения (14) служит уравнение

2s3 + 10s2 – 16s – 84 = 0,

которое при сокращении на 2 принимает вид:

s3 + 5s2 – 8s – 42 = 0. (16)

      Проверяя, какой из делителей свободного члена уравнения (16) является целым корнем этого уравнения, находим, что целым корнем кубической резольвенты является число

s = – 3. (17)

      Подставляя значения (15) и (17) в формулу (10), получаем уравнение

y2 – 2y – 4 = 0,

корни которого имеют вид:

Решение уравнений четвертой степени метод Феррари (18)

      Подставляя значения (15) и (17) в формулу (11), получаем уравнение

y2 + 2y – 2 = 0,

корни которого имеют вид:

Решение уравнений четвертой степени метод Феррари (19)

      В завершение, воспользовавшись формулой (13), из (18) и (19) находим корни уравнения (12):

Решение уравнений четвертой степени метод Феррари

      Ответ. Решение уравнений четвертой степени метод Феррари

      Замечание. При решении примера мы попутно получили разложение левой части уравнения (14) на множители:

y4 – 10y2 – 4y + 8 = (y2 – 2y – 4) (y2 + 2y – 2). (19)

      Предоставляем посетителю нашего сайта возможность убедиться в справедливости равенства (19) в качестве несложного упражнения.

 

Подготовка к ЕГЭ и ОГЭ (ГИА) в учебном центре Резольвента

    Приглашаем школьников (можно вместе с родителями) на бесплатное тестирование по математике, позволяющее выяснить, какие разделы математики и навыки в решении задач являются для ученика «проблемными».
       Запись по телефону (495) 509-28-10.

   На нашем сайте можно также ознакомиться с разработанными преподавателями учебного центра "Резольвента" учебными материалами для подготовки к ЕГЭ и ОГЭ (ГИА) по математике.

      Для школьников, желающих хорошо подготовиться и сдать ЕГЭ или ОГЭ (ГИА) по математике, физике или русскому языку на высокий балл, учебный центр "Резольвента" проводит

Решение уравнений четвертой степени метод Феррари подготовительные курсы для школьников 8, 9, 10 и 11 классов

      У нас также для школьников организованы

Решение уравнений четвертой степени метод Феррари индивидуальные занятия с репетиторами по математике, физике и русскому языку

МОСКВА, СВАО, Учебный центр "РЕЗОЛЬВЕНТА"


Hosted by RopNet         Яндекс цитирования