e-mail: resolventa@list.ru
Mосква, Северо-восток
Подготовка школьников, студентов и аспирантов к экзаменам по математике
Помощь студентам
Помощь аспирантам
Вакансии в учебном центр Резольвента
Поиск по сайту:
До ЕГЭ по математике осталось
дней часов минут секунд


НАШИ УСЛУГИ
Подготовительные курсы к ОГЭ (ГИА) и ЕГЭ
Подготовка к итоговому сочинению
Репетиторы
для школьников

Проблемы с
математикой?

(495) 509-28-10
Подготовка к ОГЭ (ГИА) и к ЕГЭ по математикеУчебный центр «РЕЗОЛЬВЕНТА»

Сложно с геометрией?

(495) 509-28-10
Помощь школьникам 8 9 10 11 классов по геометрииУчебный центр «РЕЗОЛЬВЕНТА»

ЕГЭ
по русскому языку?

(495) 509-28-10
Курсы подготовки к ЕГЭ по русскому языкуУчебный центр «РЕЗОЛЬВЕНТА»


ЕГЭ по математике?

(495) 509-28-10
Курсы подготовки к ОГЭ (ГИА) и к ЕГЭ по математикеУчебный центр «РЕЗОЛЬВЕНТА»


Готовитесь
к ЕГЭ?

(495) 509-28-10
Учебные материалы для подготовки к ЕГЭ и ОГЭ (ГИА) Учебный центр "РЕЗОЛЬВЕНТА"


Сфера описанная около конуса конус вписанный в сферу радиус сферы описанной около конуса отношение объемов конуса и описанной около него сферыЕГЭ 2018. Математика. Базовый уровень. Типовые тестовые задания. 50 вариантов заданий - Ященко И.В.
Купить книгу с доставкой
в интернет-магазине
My-shop.ru
Сфера описанная около конуса конус вписанный в сферу радиус сферы описанной около конуса отношение объемов конуса и описанной около него сферыТренировоч- ные упражнения по математике. Профильный уровень - Балаян Э.Н.
Купить книгу с доставкой
в интернет-магазине
My-shop.ru
НАШИ ПАРТНЕРЫ
Учебный центр Резольвента контактная информация
Подготовка к ЕГЭ и ОГЭ (ГИА)
Учебные пособия по математике для школьников и студентов
Справочник по математике для школьников
Справочник по математике Сфера описанная около конуса конус вписанный в сферу радиус сферы описанной около конуса отношение объемов конуса и описанной около него сферы Геометрия (Стереометрия)

Сфера, описанная около конуса.
Отношение объемов конуса и описанной около него сферы

      Определение 1. Конусом, вписанным в сферу, называют такой конус, у которого вершина и окружность основания лежат на сфере (рис. 1).

      Определение 2. Если конус вписан в сферу, то сферу называют описанной около конуса.

Сфера описанная около конуса конус вписанный в сферу радиус сферы описанной около конуса отношение объемов конуса и описанной около него сферы

Рис.1

      Утверждение. Около любого конуса можно описать сферу, причем только одну. Центр описанной сферы лежит на оси конуса.

      Доказательство. Рассмотрим конус высоты   h,  в основании которого лежит круг радиуса   r  с центром в точке   O' . Обозначим буквой   S  вершину конуса, а буквой   A  – произвольную точку на окружности основания конуса (рис. 2).

Сфера описанная около конуса конус вписанный в сферу радиус сферы описанной около конуса отношение объемов конуса и описанной около него сферы

Рис.2

      Рассмотрим сечение конуса плоскостью   ASO'   и проведем серединный перпендикуляр к отрезку   SA .   Обозначим буквой   O   точку пересечения этого серединного перпендикуляра с прямой   SO'   и соединим точку   O   с точкой   A   (рис. 3).

Сфера описанная около конуса конус вписанный в сферу радиус сферы описанной около конуса отношение объемов конуса и описанной около него сферы

Рис.3

      По свойству серединного перпендикуляра точка   O  находится на одинаковом расстоянии от точек   A   и   S .  Обозначим это расстояние через   x  и покажем, что   x  не зависит от выбора точки   A (рис. 4).

Сфера описанная около конуса конус вписанный в сферу радиус сферы описанной около конуса отношение объемов конуса и описанной около него сферы

Рис.4

      Действительно, с помощью теоремы Пифагора из прямоугольного треугольника  AOO'  получим:

x2 = (h – x )2 + r2 ,

x2 = h2 – 2hx + x2 + r2 ,

2hx = h2 + r2 .

      Следовательно,

Сфера описанная около конуса конус вписанный в сферу радиус сферы описанной около конуса отношение объемов конуса и описанной около него сферы

      Таким образом, мы установили, что точка   O  находится на одном и том же расстоянии   x,  которое зависит лишь от высоты и радиуса основания конуса, от всех точек окружности основания конуса и от его вершины   S .  Значит, точка   O  – центр сферы, описанной около конуса.

      Для доказательства единственности описанной около конуса сферы заметим, что точка, равноудаленная от всех точек окружности основания конуса, должна лежать на перпендикуляре к плоскости основания конуса, проходящем через центр этой окружности. А точка, равноудаленная от вершины конуса и от какой-либо точки на окружности основания конуса, должна лежать на серединном перпендикуляре к образующей конуса, проходящей через эту точку. Таким образом, центром сферы, описанной около конуса, может быть лишь построенная выше точка   O .  

       Следствие 1. Радиус сферы, описанной около конуса с радиусом основания   r  и высотой   h   равен

Сфера описанная около конуса конус вписанный в сферу радиус сферы описанной около конуса отношение объемов конуса и описанной около него сферы

       Следствие 2. Отношение объема конуса к объему описанной около него сферы можно найти по формуле

Сфера описанная около конуса конус вписанный в сферу радиус сферы описанной около конуса отношение объемов конуса и описанной около него сферы

 

Подготовка к ЕГЭ и ОГЭ (ГИА) в учебном центре Резольвента

   На нашем сайте можно также ознакомиться с разработанными преподавателями учебного центра "Резольвента" учебными материалами для подготовки к ЕГЭ по математике.

    Приглашаем школьников (можно вместе с родителями) на бесплатное тестирование по математике, позволяющее выяснить, какие разделы математики и навыки в решении задач являются для ученика «проблемными».
       Запись по телефону (495) 509-28-10.

      Для школьников, желающих хорошо подготовиться и сдать ЕГЭ по математике, физике или русскому языку на высокий балл, учебный центр "Резольвента" проводит

Сфера описанная около конуса конус вписанный в сферу радиус сферы описанной около конуса отношение объемов конуса и описанной около него сферы подготовительные курсы для школьников 10 и 11 классов

      У нас также для школьников организованы

Сфера описанная около конуса конус вписанный в сферу радиус сферы описанной около конуса отношение объемов конуса и описанной около него сферы индивидуальные занятия с репетиторами по математике, физике и русскому языку

МОСКВА, СВАО, Учебный центр "РЕЗОЛЬВЕНТА"


      Яндекс цитирования