e-mail: resolventa@list.ru
Mосква, Северо-восток
Подготовка школьников, студентов и аспирантов к экзаменам по математике
Помощь студентам
Помощь аспирантам
Вакансии в учебном центр Резольвента
Поиск по сайту:
До ЕГЭ по математике осталось
дней часов минут секунд



ЕГЭ по математике?

(495) 509-28-10
Курсы подготовки к ОГЭ (ГИА) и к ЕГЭ по математикеУчебный центр «РЕЗОЛЬВЕНТА»

ЕГЭ
по русскому языку?

(495) 509-28-10
Курсы подготовки к ЕГЭ по русскому языкуУчебный центр «РЕЗОЛЬВЕНТА»


НАШИ УСЛУГИ
Подготовительные курсы к ОГЭ (ГИА) и ЕГЭ
Подготовка к итоговому сочинению
Репетиторы
для школьников


Проблемы с
математикой?

(495) 509-28-10
Подготовка к ОГЭ (ГИА) и к ЕГЭ по математикеУчебный центр «РЕЗОЛЬВЕНТА»

ОГЭ (ГИА) по русскому языку?

(495) 509-28-10
Курсы подготовки к ОГЭ (ГИА) и к ЕГЭ по русскому языкуУчебный центр «РЕЗОЛЬВЕНТА»

Тригонометрические функции острого угла синус косинус тангенс котангенс определения значения формулыЕГЭ 2018. Математика. Базовый уровень. Типовые тестовые задания. 50 вариантов заданий - Ященко И.В.
Купить книгу с доставкой
в интернет-магазине
My-shop.ru
Тригонометрические функции острого угла синус косинус тангенс котангенс определения значения формулы ОГЭ 2016. Математика. Комплекс материалов для подготовки учащихся (совместно с ФИПИ) - Ященко И.В.
Купить книгу с доставкой
в интернет-магазине
My-shop.ru
Тригонометрические функции острого угла синус косинус тангенс котангенс определения значения формулы ЕГЭ по математике. Геометрия. Практическая подготовка. Учебное пособие - Черняк А.А.
Купить книгу с доставкой
в интернет-магазине
My-shop.ru
Тригонометрические функции острого угла синус косинус тангенс котангенс определения значения формулы ОГЭ 2016. Математика. 9 класс. Три модуля: "Алгебра", "Геометрия", "Реальная математика". Тематические тестовые задания - Глазков Ю.А.
Купить книгу с доставкой
в интернет-магазине
My-shop.ru
Тригонометрические функции острого угла синус косинус тангенс котангенс определения значения формулыТренировоч- ные упражнения по математике. Профильный уровень - Балаян Э.Н.
Купить книгу с доставкой
в интернет-магазине
My-shop.ru
Тригонометрические функции острого угла синус косинус тангенс котангенс определения значения формулы ОГЭ. Математика. 9 класс. Три модуля: "Алгебра", "Геометрия", "Реальная математика". Тематичес- кие тестовые задания. Супертренинг - Лаппо Л.Д.
Купить книгу с доставкой
в интернет-магазине
My-shop.ru

Сложно с геометрией?

(495) 509-28-10
Помощь школьникам 8 9 10 11 классов по геометрииУчебный центр «РЕЗОЛЬВЕНТА»
НАШИ ПАРТНЕРЫ
Учебный центр Резольвента контактная информация
Подготовка к ЕГЭ и ОГЭ (ГИА)
Учебные пособия по математике для школьников и студентов
Справочник по математике для школьников
Справочник по математике Тригонометрические функции острого угла синус косинус тангенс котангенс определения и формулы Тригонометрия

Тригонометрические функции острого угла

      Катеты BC и AC прямоугольного треугольника ABC (рис. 1) называют противолежащим катетом угла α и прилежащим катетом угла α соответственно.

Тригонометрические функции острого угла синус косинус тангенс котангенс определения значения формулы

Рис.1

      Катеты AC и BC прямоугольного треугольника ABC (рис. 2) называют противолежащим катетом угла β и прилежащим катетом угла β соответственно.

Тригонометрические функции острого угла синус косинус тангенс 
 котангенс определения значения формулы

Рис.2

      Синусом угла называют дробь:

Тригонометрические функции острого угла синус косинус тангенс котангенс определения значения формулы

      Косинусом угла называют дробь:

Тригонометрические функции острого угла синус косинус тангенс котангенс определения значения формулы

      Тангенсом угла называют дробь:

Тригонометрические функции острого угла синус косинус тангенс котангенс определения значения формулы

      Котангенсом угла называют дробь:

Тригонометрические функции острого угла синус косинус тангенс котангенс определения значения формулы

      Синус, косинус, тангенс и котангенс, и их комбинации называют тригонометрическими функциями. В данном разделе справочника тригонометрические функции вводятся для острых углов. В следующем разделе даётся определение тригонометрических функций для произвольных углов. 

      Для синуса, косинуса, тангенса и котангенса угла α используют обозначения

sin α ,   cos α ,   tg α ,   ctg α

Тригонометрические функции острого угла синус косинус тангенс котангенс определения значения формулы

Рис.3

      В соответствии с рисунком 3 справедливы формулы:

Тригонометрические функции острого угла синус косинус тангенс котангенс определения значения формулы   Тригонометрические функции острого угла синус косинус тангенс котангенс определения значения формулы   Тригонометрические функции острого угла синус косинус тангенс котангенс определения значения формулы   Тригонометрические функции острого угла синус косинус тангенс котангенс определения значения формулы

Тригонометрические функции острого угла синус косинус тангенс котангенс определения значения формулы   Тригонометрические функции острого угла синус косинус тангенс котангенс определения значения формулы   Тригонометрические функции острого угла синус косинус тангенс котангенс определения значения формулы   Тригонометрические функции острого угла синус косинус тангенс котангенс определения значения формулы

      Следовательно,

Тригонометрические функции острого угла синус косинус тангенс котангенс определения значения формулы   Тригонометрические функции острого угла синус косинус тангенс котангенс определения значения формулы   Тригонометрические функции острого угла синус косинус тангенс котангенс определения значения формулы

Тригонометрические функции острого угла синус косинус тангенс котангенс определения значения формулы   Тригонометрические функции острого угла синус косинус тангенс котангенс определения значения формулы   Тригонометрические функции острого угла синус косинус тангенс котангенс определения значения формулы

      Кроме того, справедливы формулы:

sin α = cos β,      cos α = sin β,       tg α = ctg β,        ctg α = tg β,

которые можно переписать в виде:

sin α = cos (90° – α),      cos α = sin (90° – α),

tg α = ctg (90° – α),      ctg α = tg (90° – α).

      Пример. Найти тригонометрические функции углов  30°,  45°,  60°.

      Решение. Рассмотрим равносторонний треугольник ABC, сторона которого равна 2 (рис. 4), и проведем высоту BD.

Тригонометрические функции острого угла синус косинус тангенс котангенс определения значения формулы

Рис.4

Тогда

Тригонометрические функции острого угла синус косинус тангенс котангенс определения значения формулы

      Поэтому

Тригонометрические функции острого угла синус косинус тангенс котангенс определения значения формулы

      Кроме того

Тригонометрические функции острого угла синус косинус тангенс котангенс определения значения формулы

      Теперь рассмотрим прямоугольный равнобедренный треугольник ABC, катеты которого равны 1 (рис. 5).

Тригонометрические функции острого угла синус косинус тангенс котангенс определения значения формулы

      Тогда

Тригонометрические функции острого угла синус косинус тангенс котангенс определения значения формулы

      Поэтому

Тригонометрические функции острого угла синус косинус тангенс котангенс определения значения формулы

      Определение тригонометрических функций произвольного угла приводится в разделе справочника "Тригонометрические функции произвольного угла".

Подготовка к ЕГЭ и ОГЭ (ГИА) в учебном центре Резольвента

   На нашем сайте можно также ознакомиться с разработанными преподавателями учебного центра "Резольвента" учебными материалами для подготовки к ЕГЭ и ОГЭ (ГИА) по математике.

    Приглашаем школьников (можно вместе с родителями) на бесплатное тестирование по математике, позволяющее выяснить, какие разделы математики и навыки в решении задач являются для ученика «проблемными».
       Запись по телефону (495) 509-28-10.

      Для школьников, желающих хорошо подготовиться и сдать ЕГЭ по математике, физике или русскому языку на высокий балл, учебный центр "Резольвента" проводит

Тригонометрические функции острого угла синус косинус тангенс котангенс определения и формулы подготовительные курсы для школьников 10 и 11 классов

      У нас также для школьников организованы

Тригонометрические функции острого угла синус косинус тангенс котангенс определения и формулы индивидуальные занятия с репетиторами по математике, физике и русскому языку

МОСКВА, СВАО, Учебный центр "РЕЗОЛЬВЕНТА"


      Яндекс цитирования