Mосква, Северо-восток

Окружность, описанная около треугольника.
Треугольник, вписанный в окружность. Теорема синусов

Справочник по математике для школьников геометрия планиметрия средние линии треугольникаСерединный перпендикуляр к отрезку
Справочник по математике для школьников геометрия планиметрия средняя линия трапецииОкружность описанная около треугольника
Справочник по математике для школьников геометрия планиметрия средние линии четырехугольников теорема ВариньонаСвойства описанной около треугольника окружности. Теорема синусов
Справочник по математике для школьников геометрия планиметрия средние линии тетраэдраДоказательства теорем о свойствах описанной около треугольника окружности
Описанная окружность центр радиус серединный перпендикуляр свойства теорема синусов

Серединный перпендикуляр к отрезку

      Определение 1. Серединным перпендикуляром к отрезку называют, прямую, перпендикулярную к этому отрезку и проходящую через его середину (рис. 1).

Серединный перпендикуляр свойства

Рис.1

      Теорема 1. Каждая точка серединного перпендикуляра к отрезку находится на одном и том же расстоянии от концов этого отрезка.

      Доказательство. Рассмотрим произвольную точку   D,   лежащую на серединном перпендикуляре к отрезку   AB   (рис.2), и докажем, что треугольники   ADC   и   BDC   равны.

Серединный перпендикуляр свойства

Рис.2

      Действительно, эти треугольники являются прямоугольными треугольниками, у которых катеты   AC   и   BC   равны, а катет   DC   является общим. Из равенства треугольников   ADC   и   BDC   вытекает равенство отрезков   AD   и   DB.   Теорема 1 доказана.

      Теорема 2 (Обратная  к теореме 1). Если точка находится на одном и том же расстоянии от концов отрезка, то она лежит на серединном перпендикуляре к этому отрезку.

      Доказательство. Докажем теорему 2 методом «от противного». С этой целью предположим, что некоторая точка   E   находится на одном и том же расстоянии от концов отрезка, но не лежит на серединном перпендикуляре к этому отрезку. Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точки   E   и   A   лежат по разные стороны от серединного перпендикуляра (рис.3). В этом случае отрезок   EA   пересекает серединный перпендикуляр в некоторой точке, которую мы обозначим буквой   D.

Серединный перпендикуляр свойства

Рис.3

      Докажем, что отрезок   AE   длиннее отрезка   EB.   Действительно,

Серединный перпендикуляр свойства
Серединный перпендикуляр свойства

      Таким образом, в случае, когда точки   E   и   A   лежат по разные стороны от серединного перпендикуляра, мы получили противоречие.

Серединный перпендикуляр свойства

Рис.4

      Теперь рассмотрим случай, когда точки   E   и   A   лежат по одну сторону от серединного перпендикуляра (рис.4). Докажем, что отрезок   EB   длиннее отрезка   AE.   Действительно,

Серединный перпендикуляр свойства
Серединный перпендикуляр свойства

      Полученное противоречие и завершает доказательство теоремы 2

Окружность, описанная около треугольника

      Определение 2. Окружностью, описанной около треугольника, называют окружность, проходящую через все три вершины треугольника (рис.5). В этом случае треугольник называют треугольником, вписанным в окружность, или вписанным треугольником.

Описанная около треугольника окружность треугольник вписанный в окружность

Рис.5

Свойства описанной около треугольника окружности. Теорема синусов

ФигураРисунокСвойство
Серединные перпендикуляры
к сторонам треугольника
Серединный перпендикуляр свойстваВсе серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.
Посмотреть доказательство
Окружность, описанная около треугольникаОписанная около треугольника окружность треугольник вписанный в окружностьОколо любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.
Посмотреть доказательство
Центр описанной около остроугольного треугольника окружностиЦентр описанной около остроугольного треугольника окружности лежит внутри треугольника.
Центр описанной около прямоугольного треугольника окружностиОписанная около прямоугольного треугольника окружностьЦентром описанной около прямоугольного треугольника окружности является середина гипотенузы.
Посмотреть доказательство
Центр описанной около тупоугольного треугольника окружностиОписанная около треугольника окружность центр радиус свойстваЦентр описанной около тупоугольного треугольника окружности лежит вне треугольника.
Теорема синусовТеорема синусов

Для любого треугольника справедливы равенства (теорема синусов):

Теорема синусов,

где   a , b , c   – стороны треугольника,   A , B , С   – углы треугольника,   R   – радиус описанной окружности.

Посмотреть доказательство

Площадь треугольникаФормула площади треугольника через радиус описанной окружности

Для любого треугольника справедливо равенство:

S = 2R2 sin A sin B sin C ,

где   A , B , С   – углы треугольника,   S   – площадь треугольника,   R   – радиус описанной окружности.

Посмотреть доказательство

Радиус описанной окружностиФормула для радиуса описанной окружности

Для любого треугольника справедливо равенство:

Формула для радиуса описанной окружности

где   a , b , c   – стороны треугольника,   S   – площадь треугольника,   R   – радиус описанной окружности.

Посмотреть доказательство

Серединные перпендикуляры к сторонам треугольника
Серединный перпендикуляр свойства

Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Посмотреть доказательство

Окружность, описанная около треугольника
Описанная около треугольника окружность треугольник вписанный в окружность

Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Посмотреть доказательство

Центр описанной около остроугольного треугольника окружности
Описанная около треугольника окружность треугольник вписанный в окружность

Центр описанной около остроугольного треугольника окружности лежит внутри треугольника.

Центр описанной около прямоугольного треугольника окружности
Описанная около прямоугольного треугольника окружность

Центром описанной около прямоугольного треугольника окружности является середина гипотенузы.

Посмотреть доказательство

Центр описанной около тупоугольного треугольника окружности
Описанная около треугольника окружность центр радиус свойства

Центр описанной около тупоугольного треугольника окружности лежит вне треугольника.

Теорема синусов
Теорема синусов

Для любого треугольника справедливы равенства (теорема синусов):

Теорема синусов,

где   a , b , c   – стороны треугольника,   A , B , С   – углы треугольника,   R   – радиус описанной окружности.

Посмотреть доказательство

Площадь треугольника
Формула площади треугольника через радиус описанной окружности

Для любого треугольника справедливо равенство:

S = 2R2 sin A sin B sin C ,

где   A , B , С   – углы треугольника,   S   – площадь треугольника,   R   – радиус описанной окружности.

Посмотреть доказательство

Радиус описанной окружности
Формула для радиуса описанной окружности

Для любого треугольника справедливо равенство:

Формула для радиуса описанной окружности

где   a , b , c   – стороны треугольника,   S   – площадь треугольника,   R   – радиус описанной окружности.

Посмотреть доказательство

Доказательства теорем о свойствах описанной около треугольника окружности

      Теорема 3. Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

      Доказательство. Рассмотрим два серединных перпендикуляра, проведённых к сторонам   AC   и   AB   треугольника   ABC,   и обозначим точку их пересечения буквой   O   (рис. 6).

Описанная около треугольника окружность серединный перпендикуляр свойства доказательства

Рис.6

      Поскольку точка   O   лежит на серединном перпендикуляре к отрезку   AC,   то в силу теоремы 1 справедливо равенство:

CO = AO .

      Поскольку точка O лежит на серединном перпендикуляре к отрезку   AB,   то в силу теоремы 1 справедливо равенство:

AO = BO .

      Следовательно, справедливо равенство:

CO = BO ,

откуда с помощью теоремы 2 заключаем, что точка O лежит на серединном перпендикуляре к отрезку   BC. Таким образом, все три серединных перпендикуляра проходят через одну и ту же точку, что и требовалось доказать.

      Следствие. Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

      Доказательство. Рассмотрим точку   O,   в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника   ABC   (рис. 6).

      При доказательстве теоремы 3 было получено равенство:

AO = OB = OC ,

из которого вытекает, что окружность с центром в точке   O   и радиусами   OA,   OB,   OC   проходит через все три вершины треугольника   ABC,   что и требовалось доказать.

      Теорема 4 (теорема синусов). Для любого треугольника (рис. 7)

Теорема синусов

Рис.7

справедливы равенства:

Теорема синусов.

      Доказательство. Докажем сначала, что длина хорды окружности радиуса   R хорды окружности радиуса   R,   на которую опирается вписанный угол величины   φ ,   вычисляется по формуле:

l = 2Rsin φ .(1)

      Рассмотрим сначала случай, когда одна из сторон вписанного угла является диаметром окружности (рис.8).

Описанная около треугольника окружность серединный перпендикуляр свойства доказательства

Рис.8

      Угол   MPN,   как угол,опирающийся на диаметр, является прямым угломугол,опирающийся на диаметр, является прямым углом, и равенство (1) вытекает из определения синуса угла прямоугольного треугольника.

      Поскольку все вписанные углы, опирающиеся на одну и ту же дугу, равны, то для произвольного вписанного угла всегда найдется равный ему вписанный угол, у которого одна из сторон является диаметром окружности.

      Формула (1) доказана.

      Из формулы (1) для вписанного треугольника   ABC   получаем (рис.7):

Теорема синусов доказательство
Теорема синусов доказательство

      Теорема синусов доказана.

Подготовка к ЕГЭ и ОГЭ в учебном центре Резольвента

      На нашем сайте можно также ознакомиться с разработанными преподавателями учебного центра «Резольвента» учебными материалами для подготовки к ЕГЭ и ОГЭ по математике.

    Приглашаем школьников (можно вместе с родителями) на бесплатное тестирование по математике, позволяющее выяснить, какие разделы математики и навыки в решении задач являются для ученика «проблемными».

Запись по телефону (495) 509-28-10

      Для школьников, желающих хорошо подготовиться и сдать ЕГЭ или ОГЭ по математике или русскому языку на высокий балл, учебный центр «Резольвента» проводит

Описанная окружность центр радиус серединный перпендикуляр свойства теорема синусовподготовительные курсы для школьников 8, 9, 10 и 11 классов

      У нас также для школьников организованы

Описанная окружность центр радиус серединный перпендикуляр свойства теорема синусовиндивидуальные занятия с репетиторами по математике и русскому языку

МОСКВА, СВАО, Учебный центр «РЕЗОЛЬВЕНТА»

До ЕГЭ по математике осталось
днейчасовминутсекунд

НАШИ УСЛУГИ
Подготовительные курсы к ОГЭ и ЕГЭ
Подготовка к итоговому сочинению
Репетиторы
для школьников
НАШИ МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ
Справочник
по математике
для школьников
Наши учебные пособия
ОФИЦИАЛЬНЫЕ МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ
Демонстрационные варианты ОГЭ
Демонстрационные варианты ЕГЭ

Проблемы с
математикой?

ПОМОЖЕМ!

(495) 509-28-10

Подготовка к ОГЭ и к ЕГЭ по математикеУчебный центр «РЕЗОЛЬВЕНТА»


ОГЭ по русскому языку?

(495) 509-28-10
Курсы подготовки к ОГЭ и к ЕГЭ по русскому языкуУчебный центр «РЕЗОЛЬВЕНТА»

Сложно с геометрией?

ПРИХОДИТЕ!

(495) 509-28-10

Помощь школьникам 8 9 10 11 классов по геометрииУчебный центр «РЕЗОЛЬВЕНТА»




ЕГЭ
по русскому языку?

(495) 509-28-10
Курсы подготовки к ЕГЭ по русскому языкуУчебный центр «РЕЗОЛЬВЕНТА»


Как решать задачи
по математике?

(495) 509-28-10
Репетиторы по математикеУчебный центр «РЕЗОЛЬВЕНТА»


ЕГЭ по математике?

(495) 509-28-10
Курсы подготовки к ОГЭ и к ЕГЭ по математикеУчебный центр «РЕЗОЛЬВЕНТА»


Готовитесь
к ЕГЭ?

(495) 509-28-10
Учебные материалы для подготовки к ЕГЭУчебный центр «РЕЗОЛЬВЕНТА»
НАШИ ПАРТНЕРЫ

      Яндекс цитирования