e-mail: resolventa@list.ru
Mосква, Северо-восток
Подготовка школьников, студентов и аспирантов к экзаменам по математике
Помощь студентам
Помощь аспирантам
Вакансии в учебном центр Резольвента
Поиск по сайту:
До ЕГЭ по математике осталось
дней часов минут секунд


НАШИ УСЛУГИ
Подготовительные курсы к ОГЭ (ГИА) и ЕГЭ
Подготовка к итоговому сочинению
Репетиторы
для школьников
Наши учебные пособия
ОФИЦИАЛЬНЫЕ МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ
Демонстрационные варианты ЕГЭ



Проблемы с
математикой?

(495) 509-28-10
Подготовка к ОГЭ (ГИА) и к ЕГЭ по математикеУчебный центр «РЕЗОЛЬВЕНТА»

Сложно с геометрией?

(495) 509-28-10
Помощь школьникам 8 9 10 11 классов по геометрииУчебный центр «РЕЗОЛЬВЕНТА»

ЕГЭ
по русскому языку?

(495) 509-28-10
Курсы подготовки к ЕГЭ по русскому языкуУчебный центр «РЕЗОЛЬВЕНТА»


ЕГЭ по математике?

(495) 509-28-10
Курсы подготовки к ОГЭ (ГИА) и к ЕГЭ по математикеУчебный центр «РЕЗОЛЬВЕНТА»


Готовитесь
к ЕГЭ?

(495) 509-28-10
Учебные материалы для подготовки к ЕГЭ и ОГЭ (ГИА) Учебный центр "РЕЗОЛЬВЕНТА"


секущая графика функции уравнение секущей касательная к графику функции уравнение касательной производная функции геометрический смысл производной тангенс угла наклона касательнойЕГЭ 2018. Математика. Базовый уровень. Типовые тестовые задания. 50 вариантов заданий - Ященко И.В.
Купить книгу с доставкой
в интернет-магазине
My-shop.ru
секущая графика функции уравнение секущей касательная к графику функции уравнение касательной производная функции геометрический смысл производной тангенс угла наклона касательнойТренировоч- ные упражнения по математике. Профильный уровень - Балаян Э.Н.
Купить книгу с доставкой
в интернет-магазине
My-shop.ru
секущая графика функции уравнение секущей касательная к графику функции уравнение касательной производная функции геометрический смысл производной тангенс угла наклона касательной ЕГЭ 2016. Математика. Задачи с параметром. Задача 18 (профильный уровень). Рабочая тетрадь. ФГОС - Шестаков С.А.
Купить книгу с доставкой
в интернет-магазине
My-shop.ru
секущая графика функции уравнение секущей касательная к графику функции уравнение касательной производная функции геометрический смысл производной тангенс угла наклона касательнойГотовимся к ЕГЭ. Математика. Диагностичес- кие работы в формате ЕГЭ 2015. Базовый уровень
Купить книгу с доставкой
в интернет-магазине
My-shop.ru
секущая графика функции уравнение секущей касательная к графику функции уравнение касательной производная функции геометрический смысл производной тангенс угла наклона касательной ЕГЭ по математике. Геометрия. Практическая подготовка. Учебное пособие - Черняк А.А.
Купить книгу с доставкой
в интернет-магазине
My-shop.ru
секущая графика функции уравнение секущей касательная к графику функции уравнение касательной производная функции геометрический смысл производной тангенс угла наклона касательной Математика. Базовый уровень ОГЭ-2015. Пособие для "чайников". Модуль 2. Геометрия - Лысенко Ф.Ф.
Купить книгу с доставкой
в интернет-магазине
My-shop.ru
секущая графика функции уравнение секущей касательная к графику функции уравнение касательной производная функции геометрический смысл производной тангенс угла наклона касательнойЕГЭ-2016. Математика. 30 вариантов экзаменацион- ных работ для подготовки к ЕГЭ. Базовый уровень
Купить книгу с доставкой
в интернет-магазине
My-shop.ru
секущая графика функции уравнение секущей касательная к графику функции уравнение касательной производная функции геометрический смысл производной тангенс угла наклона касательнойПодготовка к ЕГЭ по математике в 2016 году. Профильный уровень. 19 задач. Методические указания. ФГОС - Ященко И.В.
Купить книгу с доставкой
в интернет-магазине
My-shop.ru
секущая графика функции уравнение секущей касательная к графику функции уравнение касательной производная функции геометрический смысл производной тангенс угла наклона касательнойЕГЭ 2016. Математика. Эксперт. Подготовка к ЕГЭ - Лаппо Л.Д.
Купить книгу с доставкой
в интернет-магазине
My-shop.ru
секущая графика функции уравнение секущей касательная к графику функции уравнение касательной производная функции геометрический смысл производной тангенс угла наклона касательнойЕГЭ. Математика. Задание 21. Решение задач и уравнений в целых числах - Садовничий Ю.В.
Купить книгу с доставкой
в интернет-магазине
My-shop.ru


НАШИ ПАРТНЕРЫ
Учебный центр Резольвента контактная информация
Подготовка к ЕГЭ и ОГЭ (ГИА)
Учебные пособия по математике для школьников и студентов
Справочник по математике для школьников
Справочник по математике секущая графика функции уравнение секущей касательная к графику функции уравнение касательной производная функции геометрический смысл производной тангенс угла наклона касательной Элементы математического анализа

Секущая графика функции. Касательная к графику функции. Производная функции. Геометрический смысл производной

секущая графика функции уравнение секущей Секущая графика функции. Уравнение секущей графика функции
Касательная к графику функции Касательная к графику функции
Производная функции Производная функции
Уравнение касательной к графику функции Уравнение касательной к графику функции
Геометрический смысл производной Геометрический смысл производной

секущая графика функции уравнение секущей касательная к графику функции уравнение касательной производная функции геометрический смысл производной тангенс угла наклона касательной

Секущая графика функции. Уравнение секущей графика функции

      Рассмотрим график некоторой функции   y = f (x),   точки   A= (x0f (x0))   и   B = (x1f (x1))   на графике, прямую, проходящую через точки   A   и   B,   и произвольную точку   C= (x; y)   на этой прямой (рис. 1).

секущая графика функции уравнение секущей

Рис.1

      Определение 1. Прямую, проходящую через две произвольные точки графика функции, называют секущей графика функции.

      В соответствии с определением 1 прямая, проходящая через точки   A   и   B   графика функции   y = f (x),   является секущей этого графика.

      Выведем уравнение секущей графика функции.

      Для этого рассмотрим векторы секущая графика функции уравнение секущей и секущая графика функции уравнение секущей, координаты которых имеют вид:

секущая графика функции уравнение секущей

      Поскольку векторы секущая графика функции уравнение секущей и секущая графика функции уравнение секущей лежат на одной прямой, то справедливо равенство

секущая графика функции уравнение секущей (1)

где   k   – некоторое число.

      Переписывая равенство (1) в координатах, получим систему (2):

секущая графика функции уравнение секущей (2)

      Исключая из системы (2) переменную   k ,  получим систему (3):

секущая графика функции уравнение секущей (3)

второе уравнение которой можно записать в следующем виде

секущая графика функции уравнение секущей (4)

      Уравнение (4) и является уравнением секущей графика функции   y = f (x),   проходящей через точки  A = (x0;  (x0))   и   B = (x1f (x1))   этого графика.

Касательная к графику функции

      Проведем секущую графика функции   y = f (x),   проходящую через точки   A   и   B   этого графика, и рассмотрим случай, когда точка   A   неподвижна, а точка   B   неограниченно приближается к точке   A   по графику функции   y = f (x)   (рис. 2).

Касательная к графику функции

Рис.2

      Неограниченное приближение точки   B   к точке   A   принято обозначать

BA

и произносить   «B   стремится к   A».  

     Заметим, что, если   BA   для точек  A = (x0;  f (x0))   и   B = (x1f (x1))  графика функции 
y = f (x),   то это означает, что   x1x0 .  

      Определение 2. Если при   x1x0   существует предельное положение секущей графика фукнкции   y = f (x),  то это предельное положение секущей называют касательной к графику функции   y = f (x)  в точке   A = (x0;  f (x0))  (рис. 3) .

Касательная к графику функции

Рис.3

Производная функции

      Определение 3. Если при   x1x0   отношение

Производная функции, (5)

входящее в формулу (4), стремится к некоторому числу, то это число называют производной функции   y = f (x) в точке  x0 ,   обозначают   f′(x0)   или Производная функциии записывают так:

Производная функции (6)

Уравнение касательной к графику функции

      Из формул (4) и (6) вытекает следующее

      Утверждение. Если у функции   y = f (x)   существует производная в точке   x0 ,   то к графику функции   y = f (x)   в точке с координатами  (x0;  f (x0))  можно провести касательную, а уравнение этой касательной имеет вид:

y = f′(x0) (x – x0) + f (x0) (7)

Геометрический смысл производной

      Рассмотрим сначала возрастающую функцию   y = f (x)   и проведем секущую графика этой функции, проходящую через точки  A = (x0;  f (x0))   и   B = (x1f (x1))  (рис. 4).

Геометрический смысл производной

Рис.4

      Обозначим буквой   φ   угол, образованный секущей и положительным направлением оси   Ox,   отсчитываемый против часовой стрелки. Тогда угол   BAD   в треугольнике   ABD   на рисунке 4 равен   φ ,   и по определению тангенса угла получаем равенство

Геометрический смысл производной, (8)

причем по определению углового коэффициента прямой   tg φ  является угловым коэффициентом секущей графика функции   y = f (x),   проходящей через точки  A = (x0;  f (x0))   и   B = (x1f (x1))   этого графика.

      Случай, когда функция   y = f (x)   убывает, изображен на рисунке 5

Геометрический смысл производной

Рис.5

      В этом случае угол   φ  является тупым, причем

Геометрический смысл производной

то есть формула (8) справедлива и для случая, когда функция   y = f (x)   убывает.

      Отсюда в соответствии с определением производной функции вытекает соотношение:

Геометрический смысл производной

где буквой   α   обозначен угол, образованный касательной к графику функции   y = f (x)   в точке   A = (x0;  f (x0))   с положительным направлением оси   Ox   (рис. 6).

Геометрический смысл производной

Рис.6

      Таким образом, если у функции   y = f (x)   в точке   x0   существует производная, то эта производная равна тангенсу угла наклона касательной к графику функции   y = f (x)   в точке   (x0;  f (x0)) :

f′(x0) = tg α ,

где угол наклона   α   образован касательной и положительным направлением оси   Ox   и отсчитывается в положительном направлении (то есть против часовой стрелки).

 

Подготовка к ЕГЭ и ОГЭ (ГИА) в учебном центре Резольвента

   На нашем сайте можно также ознакомиться с разработанными преподавателями учебного центра "Резольвента" учебными материалами для подготовки к ЕГЭ по математике.

    Приглашаем школьников (можно вместе с родителями) на бесплатное тестирование по математике, позволяющее выяснить, какие разделы математики и навыки в решении задач являются для ученика «проблемными».
       Запись по телефону (495) 509-28-10.

      Для школьников, желающих хорошо подготовиться и сдать ЕГЭ по математике, физике или русскому языку на высокий балл, учебный центр "Резольвента" проводит

секущая графика функции уравнение секущей касательная к графику функции уравнение касательной производная функции геометрический смысл производной тангенс угла наклона касательной подготовительные курсы для школьников 10 и 11 классов

      У нас также для школьников организованы

секущая графика функции уравнение секущей касательная к графику функции уравнение касательной производная функции геометрический смысл производной тангенс угла наклона касательной индивидуальные занятия с репетиторами по математике, физике и русскому языку

МОСКВА, СВАО, Учебный центр "РЕЗОЛЬВЕНТА"


Hosted by RopNet         Яндекс цитирования