Mосква, Северо-восток

Взаимное расположение двух плоскостей в пространстве.
Признаки параллельности двух плоскостей

Справочник по математике для школьников геометрия стереометрия признаки параллельности плоскостейПризнаки параллельности плоскостей

      Две плоскости в пространстве могут быть параллельными или могут пересекаться, как показано в следующей таблице.

ФигураРисунокОпределение
Две пересекающиеся плоскостиПересекающиеся плоскостиДве плоскости называют пересекающимися, если они не совпадают, и у них есть общие точки. В случае, когда две плоскости пересекаются, пересечением этих плоскостей является прямая линия.
Две параллельные плоскостиПараллельные плоскостиДве плоскости называют параллельными, если они не имеют общих точек.
Две пересекающиеся плоскости
Пересекающиеся плоскости

Определение:
Две плоскости называют пересекающимися, если они не совпадают, и у них есть общие точки. В случае, когда две плоскости пересекаются, пересечением этих плоскостей является прямая линия.

Две параллельные плоскости
Параллельные плоскости

Определение:
Две плоскости называют параллельными, если они не имеют общих точек.

Признаки параллельности двух плоскостей

      Первый признак параллельности двух плоскостей. Если две пересекающиеся прямые пересекающиеся прямые, лежащие в одной плоскости, соответственно параллельны параллельны двум прямым, лежащим в другой плоскости, то такие плоскости параллельны.

      Доказательство. Рассмотрим рисунок 1, на котором изображены плоскости  α  и   β

Признак параллельности плоскостей

Рис.1

      Прямые a и b лежат в плоскости  α  и пересекаются в точке K. Прямые c и d лежат в плоскости  β  и параллельны прямым a и b соответственно.

      Будем доказывать первый признак параллельности двух плоскостей методом «от противного». Для этого предположим, что плоскости  α  и   β  не параллельны. Следовательно, плоскости  α  и   β  должны пересекаться, причём пересекаться по некоторой прямой. Обозначим прямую линию, по которой пересекаются плоскости  α  и   β  буквой l (рис.2) и воспользуемся признаком параллельности прямой и плоскости.

Признак параллельности плоскостей
Признак параллельности плоскостей

Рис.2

      Плоскость  α  проходит через прямую a, параллельную прямой c, и пересекает плоскость   β  по прямой l. Отсюда, в силу признака параллельности прямой и плоскости, заключаем, что прямые a и l параллельны. В то же время плоскость  α  проходит через прямую b, параллельную прямой d, и пересекает плоскость  β  по прямой l. Отсюда, в силу признака параллельности прямой и плоскости, заключаем, что прямые b и l параллельны. Таким образом, мы получили, что на плоскости  α  через точку K проходят две прямые, а именно, прямые a и b, которые параллельны прямой l. Полученное противоречие с аксиомой о параллельных прямых аксиомой о параллельных прямых даёт возможность утверждать, что предположение о том, что плоскости  α  и   β  пересекаются, является неверным. Доказательство первого признака параллельности двух плоскостей завершено.

      Второй признак параллельности двух плоскостей. Если две пересекающиеся прямые, лежащие в одной плоскости, параллельны другой плоскости, то такие плоскости параллельны.

      Доказательство. Рассмотрим рисунок 3, на котором изображены плоскости  α  и   β.

Признак параллельности плоскостей

Рис.3

      На этом рисунке также изображены прямые a и b, которые лежат в плоскости  α  и пересекаются в точке K. По условию каждая из прямых a и b параллельна плоскости  β. Требуется доказать, что плоскости  α  и   β  параллельны.

      Доказательство этого утверждения аналогично доказательству первого признака параллельности двух плоскостей, и мы  его оставляем читателю в качестве полезного упражнения.

Подготовка к ЕГЭ и ОГЭ в учебном центре Резольвента

      На нашем сайте можно также ознакомиться с разработанными преподавателями учебного центра «Резольвента» учебными материалами для подготовки к ЕГЭ по математике.

    Приглашаем школьников (можно вместе с родителями) на бесплатное тестирование по математике, позволяющее выяснить, какие разделы математики и навыки в решении задач являются для ученика «проблемными».

Запись по телефону (495) 509-28-10

      Для школьников, желающих хорошо подготовиться и сдать ЕГЭ по математике или русскому языку на высокий балл, учебный центр «Резольвента» проводит

Взаимное расположение двух плоскостей в пространстве пересекающиеся плоскости параллельные плоскости признаки параллельности плоскостейкурсы подготовки к ЕГЭ для школьников 10 и 11 классов

      У нас также для школьников организованы

Взаимное расположение двух плоскостей в пространстве пересекающиеся плоскости параллельные плоскости признаки параллельности плоскостейиндивидуальные занятия с репетиторами по математике и русскому языку

МОСКВА, СВАО, Учебный центр «РЕЗОЛЬВЕНТА»

До ЕГЭ по математике осталось
днейчасовминутсекунд

НАШИ УСЛУГИ
Подготовительные курсы к ОГЭ и ЕГЭ
Подготовка к итоговому сочинению
Репетиторы
для школьников
НАШИ МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ
Справочник
по математике
для школьников
Наши учебные пособия


Проблемы с
математикой?

(495) 509-28-10
Подготовка к ОГЭ и к ЕГЭ по математикеУчебный центр «РЕЗОЛЬВЕНТА»

НАШИ ПАРТНЕРЫ

      Яндекс цитирования