e-mail: resolventa@list.ru
Mосква, Северо-восток
Подготовка школьников, студентов и аспирантов к экзаменам по математике
Помощь студентам
Помощь аспирантам
Вакансии в учебном центр Резольвента
Поиск по сайту:
До ЕГЭ по математике осталось
дней часов минут секунд


НАШИ УСЛУГИ
Подготовительные курсы к ОГЭ (ГИА) и ЕГЭ
Подготовка к итоговому сочинению
Репетиторы
для школьников
НАШИ МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ
Справочник
по математике
для школьников
Наши учебные пособия

Проблемы с
математикой?

(495) 509-28-10
Подготовка к ЕГЭ по математике Учебный центр "РЕЗОЛЬВЕНТА"

Сложно с геометрией?

(495) 509-28-10
Помощь школьникам по геометрии Учебный центр "РЕЗОЛЬВЕНТА"


Как решать задачи
по физике?

(495) 509-28-10
Репетиторы по физике Учебный центр "РЕЗОЛЬВЕНТА"

ОГЭ (ГИА) по русскому языку?

(495) 509-28-10
Курсы подготовки к ЕГЭ 2016 по русскому языкуУчебный центр «РЕЗОЛЬВЕНТА»

ЕГЭ по математике?

(495) 509-28-10
Курсы подготовки к ЕГЭ 2016 по математикеУчебный центр «РЕЗОЛЬВЕНТА»



Свойства углов многоугольника треугольника правильного многоугольника внешний угол смежные углы сумма угловОГЭ 2016. Математика. Комплекс материалов для подготовки учащихся (совместно с ФИПИ) - Ященко И.В.
Купить книгу с доставкой
в интернет-магазине
My-shop.ru
Свойства углов многоугольника треугольника правильного многоугольника внешний угол смежные углы сумма углов Тренировоч- ные упражнения по математике. Профильный уровень - Балаян Э.Н.
Купить книгу с доставкой
в интернет-магазине
My-shop.ru
Свойства углов многоугольника треугольника правильного многоугольника внешний угол смежные углы сумма угловОГЭ 2016. Математика. 9 класс. Три модуля: "Алгебра", "Геометрия", "Реальная математика". Тематические тестовые задания - Глазков Ю.А.
Купить книгу с доставкой
в интернет-магазине
My-shop.ru
Свойства углов многоугольника треугольника правильного многоугольника внешний угол смежные углы сумма углов ЕГЭ 2016. Математика. Задачи с параметром. Задача 18 (профильный уровень). Рабочая тетрадь. ФГОС - Шестаков С.А.
Купить книгу с доставкой
в интернет-магазине
My-shop.ru
Свойства углов многоугольника треугольника правильного многоугольника внешний угол смежные углы сумма угловОГЭ. Математика. 9 класс. Три модуля: "Алгебра", "Геометрия", "Реальная математика". Тематичес- кие тестовые задания. Супертренинг - Лаппо Л.Д.
Купить книгу с доставкой
в интернет-магазине
My-shop.ru
Свойства углов многоугольника треугольника правильного многоугольника внешний угол смежные углы сумма углов ЕГЭ по математике. Геометрия. Практическая подготовка. Учебное пособие - Черняк А.А.
Купить книгу с доставкой
в интернет-магазине
My-shop.ru
Свойства углов многоугольника треугольника правильного многоугольника внешний угол смежные углы сумма углов ОГЭ. Математика. 3000 задач с ответами. Три модуля: "Алгебра", "Геометрия", "Реальная математика". Все задания части 1. "Закрытый сегмент" - Ященко И.В.
Купить книгу с доставкой
в интернет-магазине
My-shop.ru
Свойства углов многоугольника треугольника правильного многоугольника внешний угол смежные углы сумма угловГотовимся к ЕГЭ. Математика. Диагностичес- кие работы в формате ЕГЭ 2015. Базовый уровень
Купить книгу с доставкой
в интернет-магазине
My-shop.ru
Свойства углов многоугольника треугольника правильного многоугольника внешний угол смежные углы сумма углов Математика. Базовый уровень ОГЭ-2015. Пособие для "чайников". Модуль 2. Геометрия - Лысенко Ф.Ф.
Купить книгу с доставкой
в интернет-магазине
My-shop.ru
Свойства углов многоугольника треугольника правильного многоугольника внешний угол смежные углы сумма угловЕГЭ-2016. Математика. 30 вариантов экзаменацион- ных работ для подготовки к ЕГЭ. Базовый уровень
Купить книгу с доставкой
в интернет-магазине
My-shop.ru
Свойства углов многоугольника треугольника правильного многоугольника внешний угол смежные углы сумма угловОГЭ-2016. Математика. 36 вариантов. Типовые экзаменацион- ные варианты - Семенов А.Л.
Купить книгу с доставкой
в интернет-магазине
My-shop.ru
НАШИ ПАРТНЕРЫ
Учебный центр Резольвента контактная информация
Подготовка к ЕГЭ и ОГЭ (ГИА)
Учебные пособия по математике для школьников и студентов
Справочник по математике для школьников
Справочник по математике замнкнутая ломаная многоугольник диагонали свойства углов многоугольника внешние углы смежные углы доказательства Геометрия (Планиметрия)

Многоугольники

Определение многоугольника

      Рассмотрим n отрезков

[A1 A2],   [A2 A3],   …   , [An An +1] (1)

причём таких, что два любых отрезка, имеющих общий конец, не лежат на одной прямой (рис.1).

Многоугольник замкнутая ломаная

Рис. 1

      Определение 1. Ломаной линией с n звеньями называют фигуру L, составленную из отрезков (1), то есть фигуру, заданную равенством

L = [A1 A2] U [A2 A3] U   …  U [An An +1]

      В случае, когда точки A1 и An +1 совпадают, ломаную линию называют замкнутой ломаной линией

(рис. 2), в противном случае её называют незамкнутой (рис.1).

Многоугольник замкнутая ломаная

Рис. 2

      Определение 2. Многоугольником называют часть плоскости, ограниченную замкнутой ломаной линией без самопересечений (рис. 3). Отрезки, составляющие ломаную линию (звенья), называют сторонами многоугольника. Концы отрезков называют вершинами многоугольника.

Многоугольник замкнутая ломаная

Рис. 3

      Определение 3. Многоугольник называют n – угольником, если он имеет n сторон.

      Таким образом, многоугольник, имеющий 3 стороны, называют треугольником, многоугольник, имеющий 4 стороны,  называют  четырёхугольником и т.д.

      Определение 4 . Периметром многоугольника называют сумму длин всех сторон многоугольника.

      Величину, равную половине периметра,  называют  полупериметром.

Диагонали n - угольника

Фигура Рисунок Описание

Диагональ
многоугольника

диагонали многоугольника

Диагональю многоугольника называют отрезок, соединяющий две несоседние вершины многоугольника

Диагонали
n – угольника, выходящие из одной вершины

диагонали многоугольника

Диагонали, выходящие из одной вершины
n
– угольника , делят n – угольник на
n – 2 треугольника 

Все диагонали
n
– угольника

диагонали многоугольника

Число диагоналей n – угольника равно

диагонали многоугольника

Внешний угол многоугольника

      Определение 5 . Два угла называют смежными, если они имеют общую сторону, и их сумма равна 180° (рис.1).

Внешний угол многоугольника смежные углы

Рис.1

      Определение 6 . Внешним углом многоугольника называют угол, смежный с внутренним углом многоугольника (рис.2).

Внешний угол многоугольника смежные углы

Рис.2

      Замечание. Мы рассматриваем только выпуклые многоугольники.

Свойства углов треугольника

Фигура Рисунок Формулировка теоремы

Углы треугольника

Свойства углов треугольника

Сумма углов треугольника равна 180°

α + β + γ = 180°

Посмотреть доказательство

Внешний угол треугольника

Внешний угол треугольника

Внешний угол треугольника равен сумме двух внутренних углов треугольника, не смежных с ним

δ = α + β

Посмотреть доказательство

Свойства углов многоугольника

Фигура Рисунок Формулировка теоремы

Углы
n – угольника

Свойства углов многоугольника

Сумма углов многоугольника равна

Свойства углов многоугольника

Посмотреть доказательство

Внешние углы
n – угольника

Свойства углов многоугольника

Сумма внешних углов n – угольника, взятых по одному у каждой вершины, равна 360°

Посмотреть доказательство

Свойства углов правильного n – угольника

Фигура Рисунок Формулировка теоремы

Углы  правильного
n – угольника

Свойства углов правильного многоугольника

Все углы правильного n – угольника равны

Свойства углов правильного многоугольника

Внешние углы 
правильного
n – угольника

Свойства углов правильного многоугольника

Все внешние углы правильного
n – угольника
равны

Свойства углов правильного многоугольника

Доказательства свойств углов многоугольника

      Теорема 1. В любом треугольнике сумма углов равна 180°.

      Доказательство. Проведем, например, через вершину B произвольного треугольника ABC прямую DE, параллельную прямой AC, и рассмотрим полученные углы с вершиной в точке B (рис. 3).

Свойства углов треугольника доказательство

Рис.3

      Углы ABD и BAC  равны как внутренние накрест лежащие. По той же причине равны углы ACB и CBE. Поскольку углы ABD, ABC и CBE в сумме составляют развёрнутый угол, то и сумма углов треугольника ABC равна 180°. Теорема доказана.

      Теорема 2. Внешний угол треугольника равен сумме двух внутренних углов треугольника, не смежных с ним.

      Доказательство. Проведём через вершину C прямую CE, параллельную прямой AB, и продолжим отрезок AC за точку C (рис.4).

Свойства углов треугольника доказательство

Рис.4

      Углы ABC и BCE  равны как внутренние накрест лежащие. Углы BAC и ECD  равны как соответственные. Поэтому внешний угол BCD равен сумме углов BAC и ABC. Теорема доказана.

      Замечание. Теорема 1 является следствием теоремы 2.

      Теорема 3. Сумма углов n – угольника равна

Свойства углов многоугольника

      Доказательство. Выберем внутри n – угольника произвольную точку O и соединим её со всеми вершинами n – угольника (рис. 5).

Свойства углов многоугольника

Рис.5

      Получим n треугольников:

OA1A2OA2A3,  …  OAnA1

      Сумма углов всех этих треугольников равна сумме всех внутренних углов n – угольника плюс сумма всех углов с вершиной в точке O. Поэтому сумма всех углов n – угольника равна

Свойства углов многоугольника

что и требовалось доказать.

      Теорема 4. Сумма внешних углов n – угольника, взятых по одному у каждой вершины, равна 360°.

      Доказательство. Рассмотрим рисунок 6.

Свойства углов многоугольника

Рис.6

      В соответствии рисунком 6 справедливы равенства

Свойства углов многоугольника

      Теорема доказана.

Подготовка к ЕГЭ и ОГЭ (ГИА) в учебном центре Резольвента

   На нашем сайте можно также ознакомиться с разработанными преподавателями учебного центра "Резольвента" учебными материалами для подготовки к ЕГЭ и ОГЭ (ГИА) по математике.

    Приглашаем школьников (можно вместе с родителями) на бесплатное тестирование по математике, позволяющее выяснить, какие разделы математики и навыки в решении задач являются для ученика «проблемными».
       Запись по телефону (495) 509-28-10.

      Для школьников, желающих хорошо подготовиться и сдать ЕГЭ или ОГЭ (ГИА) по математике, физике или русскому языку на высокий балл, учебный центр "Резольвента" проводит

замнкнутая ломаная многоугольник диагонали свойства углов многоугольника треугольника правильного многоугольника внешний угол смежные углы сумма углов подготовительные курсы для школьников 8, 9, 10 и 11 классов

      У нас также для школьников организованы

замнкнутая ломаная многоугольник диагонали свойства углов многоугольника треугольника правильного многоугольника внешний угол смежные углы сумма углов индивидуальные занятия с репетиторами по математике, физике и русскому языку

МОСКВА, СВАО, Учебный центр "РЕЗОЛЬВЕНТА"


Hosted by RopNet         Яндекс цитирования