Mосква, Северо-восток

Описанные четырехугольники

      Определение 1. Окружностью, вписанной в четырёхугольник, называют окружность, которая касается касается каждой из сторон четырёхугольника (рис.1). В этом случае четырёхугольник называют четырёхугольником, описанным около окружности или описанным четырёхугольником.

Описанные четырехугольники свойства

Рис.1

      Замечание. В настоящем разделе мы рассматриваем только выпуклые четырёхугольники.

      Теорема 1. Если четырёхугольник описан около окружности, то суммы длин его противоположных сторон равны.

      Доказательство. Рассмотрим четырёхугольник ABCD, описанный около окружности, и обозначим буквами E, F, G, H – точки касания сторон четырёхугольника с окружностью (рис.2).

Описанные четырехугольники свойства

Рис.2

      В силу теоремы об отрезках касательных, проведённых к окружности из одной точки, справедливы равенства

AH = AE,       BF = BE,       CF = CG,       DH = DG,

      Складывая эти равенства, получим:

AH + BF + CF + DH = AE + BE + CG + DG,
AH + BF + CF + DH =
= AE + BE + CG + DG,

      Поскольку

AH + BF + CF + DH = AD + BC,       AE + BE + CG + DG = AB + CD,

то справедливо равенство

AD + BC = AB + CD,

что и требовалось доказать.

      Теорема 2 (обратная теорема к теореме 1). Если у четырёхугольника суммы длин противоположных сторон равны, то в этот четырёхугольник можно вписать окружность.

      Доказательство. Рассмотрим четырёхугольник ABCD, длины сторон которого удовлетворяют равенству

AD +BC = AB + CD,

и проведём биссектрисы углов BAD и CDA. Обозначим точку пересечения этих биссектрис буквой O, и опустим из точки O перпендикуляры OH, OE и OG на стороны AD, AB и CD соответственно (рис.3).

Описанные четырехугольники свойства

Рис.3

      Поскольку точка O лежит на биссектрисе угла BAD, то справедливо равенство

OH = OE,

      Поскольку точка O лежит на биссектрисе угла ADC, то справедливо равенство

OH = OG,

      Следовательно, справедливы равенства

OH = OE = OG,

из которых вытекает, что точки H, E и G лежат на окружности с центром в точке O и радиусом OH, касающейся сторон четырёхугольника AD, AB и CD в точках H, E и G соответственно. При этом возможны два случая:

  1. Окружность касается касается стороны BC (рис.4).

    Описанные четырехугольники свойства

    Рис.4

          В этом случае четырёхугольник ABCD описан около окружности, и теорема доказана.

  2. Окружность не касается стороны BC.

    В этом случае касательная, проведенная к окружности из точки B, пересекает прямую DC в точке K, и возможны два случая:

    1. Точка K лежит между точками C и D (рис.5)

      Описанные четырехугольники свойства

      Рис.5

    2. Точка C лежит между точками K и D (рис.6)

      Описанные четырехугольники свойства

      Рис.6

      Рассмотрим случай 2а и приведём его к противоречию. В этом случае в силу того, что четырёхугольник ABKD является описанным, а также по условию теоремы справедливы равенства:

Описанные четырехугольники свойства

Описанные четырехугольники свойства

      Последнее равенство утверждает, что в треугольнике BKC сумма двух сторон равна третьей стороне, что противоречит неравенству треугольниканеравенству треугольниканеравенству треугольника. Полученное противоречие доказывает, что случай 2а невозможен.

      Совершенно аналогичные рассуждения позволяют заключить, что случай 2b также невозможен.

      Итак, возможен и реализуется лишь случай 1.

      Теорема доказана.

      Из доказательства теоремы 2 непосредственно вытекает

      Теорема 3. Биссектрисы всех внутренних углов описанного четырёхугольника пересекаются в одной точке – центре вписанной окружности.

      В следующей таблице приводятся примеры четырёхугольников, в которые можно вписать окружность. Доказательства утверждений непосредственно вытекают из теорем 1 и 2 и предоставляются читателю в качестве несложных упражнений.

      Примеры описанных четырёхугольников

ФигураРисунокУтверждение
РомбОписанные четырехугольники свойстваВ любой ромб можно вписать окружность
КвадратОписанные четырехугольники свойстваВ любой квадрат можно вписать окружность
ПрямоугольникОписанные четырехугольники свойстваВ прямоугольник можно вписать окружность тогда и только тогда, когда он является квадратом
ПараллелограммОписанные четырехугольники свойстваВ параллелограмм можно вписать окружность тогда и только тогда, когда он является ромбом
ДельтоидОписанные четырехугольники свойстваВ любой дельтоид можно вписать окружность
ТрапецияОписанные четырехугольники свойстваВ трапецию можно вписать окружность тогда и только тогда, когда у трапеции сумма длин боковых сторон рана сумме длин оснований
Ромб
Описанные четырехугольники свойства

В любой ромб можно вписать окружность

Квадрат
Описанные четырехугольники свойства

В любой квадрат можно вписать окружность

Прямоугольник
Описанные четырехугольники свойства

В прямоугольник можно вписать окружность тогда и только тогда, когда он является квадратом

Параллелограмм
Описанные четырехугольники свойства

В параллелограмм можно вписать окружность тогда и только тогда, когда он является ромбом

Дельтоид
Описанные четырехугольники свойства

В любой дельтоид можно вписать окружность

Трапеция
Описанные четырехугольники свойства

В трапецию можно вписать окружность тогда и только тогда, когда у трапеции сумма длин боковых сторон рана сумме длин оснований

Подготовка к ЕГЭ и ОГЭ в учебном центре Резольвента

      На нашем сайте можно также ознакомиться с разработанными преподавателями учебного центра «Резольвента» учебными материалами для подготовки к ЕГЭ и ОГЭ по математике.

    Приглашаем школьников (можно вместе с родителями) на бесплатное тестирование по математике, позволяющее выяснить, какие разделы математики и навыки в решении задач являются для ученика «проблемными».

Запись по телефону (495) 509-28-10

      Для школьников, желающих хорошо подготовиться и сдать ЕГЭ или ОГЭ по математике или русскому языку на высокий балл, учебный центр «Резольвента» проводит

Описанные четырехугольники свойства доказательстваподготовительные курсы для школьников 8, 9, 10 и 11 классов

      У нас также для школьников организованы

Описанные четырехугольники свойства доказательстваиндивидуальные занятия с репетиторами по математике и русскому языку

МОСКВА, СВАО, Учебный центр «РЕЗОЛЬВЕНТА»

До ЕГЭ по математике осталось
днейчасовминутсекунд



НАШИ УСЛУГИ
Подготовительные курсы к ОГЭ и ЕГЭ
Подготовка к итоговому сочинению
Репетиторы
для школьников
НАШИ УЧЕБНЫЕ МАТЕРИАЛЫ
Наши учебные пособия
ОФИЦИАЛЬНЫЕ МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ
Демонстрационные варианты ОГЭ
Демонстрационные варианты ЕГЭ




ОГЭ по русскому языку?

(495) 509-28-10
Курсы подготовки к ОГЭ и к ЕГЭ по русскому языкуУчебный центр «РЕЗОЛЬВЕНТА»


Проблемы с
математикой?

ПОМОЖЕМ!

(495) 509-28-10

Подготовка к ОГЭ и к ЕГЭ по математикеУчебный центр «РЕЗОЛЬВЕНТА»


Сложно с геометрией?

ПРИХОДИТЕ!

(495) 509-28-10

Помощь школьникам 8 9 10 11 классов по геометрииУчебный центр «РЕЗОЛЬВЕНТА»

НАШИ ПАРТНЕРЫ

      Яндекс цитирования